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Abstract

Suppose that two vector fields on a smooth manifold render some
equilibrium point globally asymptotically stable (GAS). We show that
there exists a homotopy between the corresponding semiflows such that
this point remains GAS along this homotopy.
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Introduction In the context of what we call today Conley index theory (see
Section A), Conley posed the following “converse question” in the 1970s: “To
what extent does the homotopy index [Conley index]| itself determine the equiva-
lence class of isolated invariant sets which are related by continuation?” [Con78,
p. 83]. Recently, Kvalheim proved that uniquely integrable C° vector fields,
on a C'*° manifold M, rendering a compact set A C M asymptotically stable,
are homotopic on an open neighbourhood U 2 A such that throughout the ho-
motopy the vector fields do not vanish on U\ A [Kva23, Thm. 1]. Connecting
this result to Conley, a follow-up question (revitalized) by Kvalheim—which
is the central question of this note—is the following.
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Question: “Are dynamical systems that render a set A asymptotically stable,
homotopic through dynamical systems that preserve this notion of stability?”

This question, in one form or another, inspired several works, for instance,
[Rei92; MRS00; JS24]. Here, we will elaborate on commentary by the author
in [JS24]. Specifically, in the seminal paper “Asymptotic stability equals ex-
ponential stability, and ISS equals finite energy gain—if you twist your eyes”
from 1999, Griine, Sontag and Wirth showed that asymptotic stability “equals”
exponential stability in the sense that if an equilibrium point is asymptotically
stable under some vector field on R”, then, there is a suitable change of coor-
dinates rendering this point exponentially stable [GSW99]. Such a change of
coordinates is understood to be instantaneous. However, by leveraging their
work, we show that asymptotic stability can be continuously “transformed”
into exponential stability, while preserving asymptotic stability throughout the
transformation, see Theorem 3.6. Differently put, asymptotic stability equals
exponential stability—mnot only if you twist your eyes, but while you twist your
eyes. The key to this is to observe that we can select the transformation from
[GSWI9] to be an orientation-preserving homeomorphism on R™, not just any
homeomorphism cf. [JS24, Sec. III], see the proof of Proposition 3.2.

This result provides a partial solution to Conley’s converse question as
it turns out that the asymptotically stable systems under consideration can
be continuously transformed into the same exponentially stable system and
hence, by transitivity, into each other. Concurrently, we discuss extensions
to discontinuous vector fields throughout, plus we illustrate how to go about
extensions to ISS (see Section 4). We also discuss intimate connections with
optimization and optimal transport (e.g., see Example 3.4 and 5.1).

Related work It can be argued that questions of the form above emerged
from studies aimed at classifying manifolds, maps and so forth. A successful,
yet coarse, resolution has been found in the study of these objects up to ho-
motopy, e.g., motivated early on by the fundamental group being homotopy
invariant, Hopf’s degree theorem, CW complexes, intractability of topological
equivalence and more at the intersection of topology and dynamical systems.

We cannot do justice here to the wealth of work in this area, but inspired
by Andronov, Pontryagin, Thom, Peixoto, Birkhoff, Milnor and several others,
it was in particular Smale highlighting that this intersection is fruitful for
both fields, see [HMS12] for context. Indeed, after seminal work by Smale on
the qualitative classification of dynamical systems [Sma67], homotopy results
concerned with Morse-Smale vector fields appeared, e.g., see [Asi7h; NP76;
Fra79]. Similarly, one can study if gradient vector fields are homotopic through
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gradient vector fields [Par90], see also [Rei91; Kva23] for work close in spirit
to ours.

In control theory, these tools (i.e., certain homotopy invariants) were used
to construct necessary conditions for feedback controllers to exist, i.e., if a
desirable (closed-loop) dynamical system belongs to a certain homotopy class,
then, there must be at least some feedback that renders the control system a
member of this class, e.g., see [Bro83; KZ84; Zab89; Cor90].

These results have in common that the original objects are “homotoped”
to something simple and “canonical” where we do our analysis. For instance,
in the context of control systems, when our goal is stabilization of the origin
on R™ through feedback, then, the canonical differential equation is © = —x
and we would like our closed-loop dynamical system to be in some qualitative
sense equivalent to this equation. This is precisely how the “index condition”
by Krasnosel’skii and Zabreiko is derived [KZ84, Sec. 52]. Clearly, necessary
conditions of this form are only as valuable as the homotopy class is distinctive,
e.g., although the index condition is powerful, it cannot differentiate between
# = x and # = —2 on R2. This is precisely what motivates us, we expect
that understanding Conley’s converse question can lead to stronger necessary
conditions for stabilization through continuous feedback.

Besides possibly stronger necessary conditions for continuous stabilization,
the study of Conley’s converse question directly relates to understanding topo-
logical properties of spaces of stable dynamical systems (as was motivation of
prior work [JS24]). This is of practical importance as several frameworks in
optimal control and reinforcement learning aim to optimize over precisely such
a space, e.g., moving from a pre-stabilized system to an optimally controlled
system, we point to [Faz+18; FGEF'T24] and references therein.

Before we continue, we recall that Conley’s converse question is not trivial.

Example 1.1 (Trivial convex combinations can fail). Consider a linear differ-
ential equation = A(s)r on R? parametrized by the matrices

0,1]5 s — As) ::s-(_ol i()1>+(1—s)~<_01 _01)

Both A(0) and A(1) correspond to global asymptotically stable systems, yet,
for s = %, the system & = A(s)z is unstable. Hence, we cannot just construct
straight-line homotopies between stable vector fields and expect that stability
is preserved. Instead, we know from [JS24] that for vector fields with convex
Lyapunov functions we should homotope via the canonical ODE & = —zx.
Explicitly, consider the following path of vector fields defined by

L -1 max{0, (1 — 2s)10}
H(z;s) = (max{(), (25 — 1)10} 4 ) z, sel0,1. o
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Notation Forr € NU{oco}, C"(U; V) denotes the set of C"-smooth functions
from U to V. The inner product on R" is denoted by (-,-) and S"~! := {x €
R™ : ||z||2 = 1}. The identity map p — p on a space M is denoted by idy;.
Given a function V : M — R, then, V71(c) :== {p € M : V(p) = c¢}. We
typically use ¢ to denote a (semi)flow. If this flow comes from a vector field
X, we write ¢(+; X), similarly, if ¢ is parametrized by s € [0,1] we write
©(+;s), that is, we overload the meaning of ¢. A homotopy [0,1] x M >
(s,p) — H(s,p) is said to be an isotopy when p — H(s,p) is a topological
embedding for all s € [0,1]. A homeomorphism ¢ : R" — R™ is said to be a
stable homeomorphism when it is a finite composition of homeomorphisms that
equal the identity map on some—not necessarily the same—mnon-empty open
subset of R™. We denote by Homeo(R";R") the group of homeomorphisms
Y : R* — R™. Additionally, we denote by Homeo™ (R"; R") C Homeo(R™; R")
the subgroup of all orientation-preserving' homeomorphisms. A continuous
function a : R>¢ — R is of class K when « is strictly increasing and a(0) = 0.
If, additionally lim,_, ;. a(s) = 400, then, « is of class K.

Dynamical systems We study semi-dynamical systems comprised of the
triple 3 := (M", ¢, R>¢). Here, M"™ will be a smooth n-dimensional manifold
(frequently, diffeomorphic to R™, which we denote by M"™ ~; R™,) and ¢ :
Rsox M™ — M™ is a (global) semiflow, that is, a continuous map that satisfies
for any p € M () 5(0,p) = p; and (i3) (2(s, oL, p) = (t + 5,p) Vs,t €
Rso :={t € R : ¢t > 0}. We will usually write ¢'(-) instead of ¢(¢,-). In
particular, we study (forward complete) semiflows generated by wvector fields
over M", that is, when ¢ satisfies

L) ms = X)), W(1,0) € Rz x M, (1)
where X is a continuous section, that is, the map X : M™ — T'M™ is continuous
and satisfies m o X = idy for 7 the projection (p,v) — m(p,v) = p. When
M™ = R", the identification TR"™ ~; R"™ x R™ allows for discussing vector fields
as self-maps of R”. On R", we will frequently work with the “canonical” ODE
& = —ux, but also with the identity map x — x. To avoid confusion, we denote
the canonical vector field by —d,, and not —idgn.

The focus on semiflows instead of flows allows us to look at sufficiently
regular discontinuous vector fields. This is relevant, as the introduction of
feedback usually results in a closed-loop vector field that cannot be assumed

'Regarding orientation, we point to [GP10; Lee12] for the smooth case. The topological
definition relies on algebraic topology, see [Hat02, Sec. 3.3].
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to be continuous (e.g., think of optimal control®). This choice of setting is also
motivated by other recent work. For instance, the research question in [0J24]
is: “Given an exponentially stable optimization algorithm, can it be modified
to obtain a finite/fized-time stable algorithm?”. Some sufficient conditions are
provided in [0J24], we will show a generic, yet less constructive viewpoint.

Let X be some vector field on R”, possibly discontinuous. To study X, we
usually pass to some differential inclusion

i€ Fla), (1.2)

where the set-valued map F : R® — 28" with 2° denoting the power set of a
set S, is in some precise sense related to X. The rationale is to pass from a
irregular single-valued map, to a more regular set-valued map.

Let A\? denote the Lebesgue measure on RY, then, solutions Z > t — £(t) to
these differential inclusions, are absolutely continuous (AC) on each compact
subinterval of Z and such that £(t) € F(&(t)) for A'-a.e. t € Z. Typically, F is
assumed to be upper semi-continuous and compact, convex valued. With those
assumptions in mind, then, under mild conditions on X, a valuable solution
framework follows by applying Filippov’s operator F, that is,

x — F[X](x) ::ﬂ ﬂ X (B"(xz,0)\ N),

6>0 NCR™:A" (N)=0

for @(+) the closure of the convex hull and B"(z,0) := {z € R" : ||[x—z]|s < 0}.
Then, solutions to & € F[X](z) are understood to be “generalized” solutions
to @ = X(z), called Filippov solutions, and such that £(t) € F[X](£(t)) for
M-a.e. t € dom(§). For references, see [Fil88], [BR0O5, Ch. 1] and [Cor08].

Stability In this section we will characterize stability under (1.2). Starting
with the regular case, for simplicity, let the vector field F' be single-valued and
smooth. In that case, F' generates a flow, denoted o(+; F'). A point z* € R™ is
an equilibrium point of F when F(x*) = 0 or equivalently ¢*(0; F) = 0 Vt € R.
We will set x* := 0, unless stated otherwise. Then, 0 is said to be globally
asymptotically stable (GAS) (under F') when

(si) 01is Lyapunov stable, that is, for any open neighbourhood U, 3 0 there
is an open set Us C U, such that ¢'(Us; F') C U, Vt € Rxg;

(s.ii) 0 is globally attractive, that is, limy_, o ¢'(xo; F') = 0 for all zo € R™.

20ne might also think of topological obstructions, however, the type of discontinuities
we consider do not allow for overcoming those obstructions, in general [Rya94].
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Remark 1.2 (On global stability). Although we merely work with R™ (or
M™ ~; R™) we take a topological approach akin to [BH06] and hence GAS
is defined as above. One can turn Property (s.i) truly global, however, e.g.,
see [Wil69; LSWOI6]. Specifically, let B,.(x) be some r-metric ball centered at
x, then, require the existence of & € K, such that for any ¢ > 0 we have
©'(Bs(e)(z)) C B:(x) ¥t € Rxg. In general these definitions are not equivalent,
however, for 0 being GAS on R", they are [ABBI7]. o

Due to the work of Lyapunov [Lia92], we know that to reason about stabil-
ity, it is worthwhile to look for “potential functions” that capture stability,
illustrated by the fact that his theory effectively replaced the definitions of
stability. Specifically, we look for V'€ C°(R"; R>) satisfying:

(V.i) V(z) >0 for all z € R™\ {0} and V(0) = 0;
(V.ii) V is radially unbounded, that is, V(x) — +oo for ||z|| — +o0; and
(Vi) (VV(z), F(x)) <0 for all x € R™*\ {0}.

Property (V.ii) implies sublevel set compactness. We call such a function a
(smooth, strict and proper) Lyapunov function (with respect to the pair (F,0)).
This work is about GAS, so we will omit “strict” and “proper” from now on.
Then, based on converse theory, e.g., see [Mas56; Kur63; Wil69; FP19], we
can appeal to the celebrated theorem stating that 0 is GAS if and only if there
is a (corresponding) smooth Lyapunov function [BR05, Thm. 2.4].

A generalization of the above to differential inclusions (1.2) is as follows.

Definition 1.3 (Strong Lyapunov pairs [CLS98, Def. 1.1]). A pair of contin-
uous functions (V,W), with V€ C*®(R™ Rso) and W € C®(R™\ {0};Rxy),
is said to be a C*° strong Lyapunov pair for F, as in (1.2), provided that F is
upper semi-continuous and compact, convex valued, plus, the following hold:

(1) V(z) >0 and W(zx) >0 on R™\ {0}, with V(0) = 0;
(ii) The sublevel sets of V' are compact; and
(iii) max,ep)(VV(z),v) < —W(zx) on R™\ {0}.

The preposition “strong” comes from the fact that we look at all solutions
satisfying (1.2). For further references, and generalizations of Lyapunov’s sta-
bility theory, we point the reader to [BS70; Son98; BR05; BH06; GST12].

Before closing this section, we explicitly illustrate why working with C'*°
or even CV vector fields is arguably overly restrictive when interested in qual-
itative stability questions. We provide two examples that will return.
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Example 1.4 (A semiflow corresponding to a vector field with bounded dis-
continuities). Consider the following discontinuous vector field on R:

&= X1(z) ;== —sgn(x), (1.3)
with sgn(0) := 0. Now, consider the map ¢; : Rsg x R — R defined through

min{0,z +t} x<0
(t,2) = i (z) =<0 r=0. (1.4)
max{0,z —t} x>0

One can check that ¢ is a semiflow, describing a solution (e.g., in the sense
of Filippov) to (1.3). Regarding stability, consider the C'* Lyapunov function
z — Vi(z) := 2% and sce that VV;(2)X;(z) = —|z| < 0 on R\ {0} (consider a
Huber loss to find a valid W in the sense of Definition 1.3). This already shows
that the existence of a smooth Lyapunov function, asserting that the origin is
GAS, does not imply the existence of a flow, nor does it imply that convergence
to 0 is merely asymptotic. Now let Xo(x) := —0,, define [0,1] 5 s +— X (+;5) :=
(1 —$)X; 4 sX» and see that for and s € [0, 1] we have VV ()X (z;s) < 0 on
R\ {0}. The semiflow corresponding to X (-; s) becomes

min{0,e 5z + (1 —e*)(1 —s)/s} x <0
(t,2) = ¢'(x;5) =< 0 r=0.
max{0,e ¥z + (e** = 1)(1 —s)/s} x>0

Then, s — ¢(+;s) parametrizes a homotopy, along semiflows such that 0 re-
mains GAS. For lim, o+ ¢(+;5), use e =1 — st + >~ ,((—st)"/n!). o

Example 1.5 (An irregular gradient flow). Let v € K, be smooth on (0, +00)
and such that v(s)/v'(s) > s (e.g., s = ~(s) = s'/2). Now consider the
function x — V. (x) := v(||z||]2) and construct the vector field

It seems we cannot appeal to Filippov’s framework as X3 is not locally es-
sentially bounded. However, as VV, () = +/(||z||2)z/||z|]2 we can study (1.5)
directly. Decompose x € R"\{0} as z = ||z||2-z/||x|2 =: 7-u, then, 7 = —+/(r)
while & = 0. In general 7/(s) > 0 Vs > 0, need not be true, but suppose this is
true for our choice of 7, e.g., pick s > v(s) = s/2. Now, suppose that 1//(s)
is of class K on R, we can define I'(r) := [ 1/4/(p)dp, which is now of class
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Ko and hence invertible on R>y. Under the aforementioned assumptions, the
semiflow corresponding to X3 becomes

) or o) i {mm{o,r—1<r<||x||2> ~Oelal T < e

0 otherwise
Further comments on related work Recently, we showed that when 0 €
R™ is GAS under a continuous vector field X, and if this can be asserted using a
C' conver Lyapunov function, then, X is straight-line homotopic to —8,, such
that the origin remains GAS along the homotopy [JS24]. This is a convenient
result, but not a general one.

Earlier, the following homotopy of vector fields, appeared in several works
(e.g., see [Rya94, p. 1603], [Son98, Thm. 21|, [Cor07, p. 291] and [JM23, Ex.
3.4]):

X(x) ifs=0
(s,z)— H(s,z):=¢ —x if s=1 . (2.1)
L0 (z; X) — ) if s € (0,1)

Unfortunately, for (2.1), 0 € R™ is not known to be GAS along the path
[0,1) > s — H(s,z). The scalar and linear cases can be understood, however.

Example 2.1 (Stability-preserving homotopies for n = 1). As for any ¢t € R+,
the only fixed point of ¢’ (-; X) is 0, it follows that for n = 1, the homotopy (2.1)
preserves stability since the sign of x — H(s,x) cannot flip, for otherwise,
©*/0=9)(2; X) = x must hold for some s € (0,1) and x # 0. o

Example 2.2 (Stability preserving homotopies for linear ODEs). Let 0 € R”
be GAS under & = X (z) := Az, for A =: TJT~! the Jordan form decomposi-
tion of A. Then it follows that 1(p*/1=9)(2; X) — 2) = 1T(e*/(=97 — [ )T 1
such that stability is preserved throughout the homotopy (2.1). o

Either way, the homotopy (2.1) does already show that there is a homotopy
that does not introduce new equilibrium points, along the homotopy. Indeed,
this has been generalized recently by Kvalheim to compact attractors on man-
ifolds [Kva23]. On the other hand, it is known that there is no reason why
stability must be preserved along such a homotopy. In the spirit of [EMO02,
Sec. 4.1], consider the following family of linear vector fields on R?:

i = X(z35) = R(s)z, [0,1]3 5+ R(s) = (Z?ﬁfji)) _czisrég)) ’

parametrizing a homotopy from X(-;0) = 0, to X(;1) = —0, along non-
vanishing vector fields on R™ \ {0}. Note, the (Hopf) indices [Mil65, p. 32]



of these “qualitatively opposite” vector fields are equal, i.e., indy(0,) = 1" =
(—1)™ = indg(—0,). It is this weakness of existing homotopy-invariants that
we hope to overcome by studying more restrictive equivalence classes.

Stability preserving homotopies Now, we will address our central research
question in case A is an equilibrium point. First, we consider 0 € R™ being GAS
under some appropriately regular vector field on R™ and eventually generalize
to smooth manifolds.

Assumption 3.1 (Vector field regularity on R™). Our vector fields are locally
essentially bounded, possibly set-valued at 0 and locally Lipschitz on R™ \ {0}.

If X satisfies Assumption 3.1, F[X] is upper semi-continuous and compact,
convex valued, which allows for a smooth converse Lyapunov theory, e.g., see
[CLS98; GST12]. We focus on Filippov’s framework, but in what follows, one
may replace F[X]| with any vector field F' that complies with Definition 1.3.

Proposition 3.2 (Strong global asymptotic stability and homotopic semiflows
on R™). Let 0 € R", forn # 5, be strongly GAS, in the sense of Filippov, under
& € F[X](z), with X satisfying Assumption 3.1. Then,

(i) for any t > 0 we have that the time-t map of the semiflow generated by
F[X], that is, ¢'(-; F[X]), is homotopic to @' (+; —0,), along time-t maps
corresponding to semiflows such that 0 is strongly GAS; and

(11) in particular, the semiflow (-; F[X]) is homotopic to ¢(-; —0;), along
semiflows that preserve O being strongly GAS.

Proof. The proof proceeds in 5 steps. First we show that the time-t map
©'(+; F[X]) can be homotoped along semiflows to a gradient flow ¢!(-; —VV),
such that along the homotopy 0 remains strongly GAS. By exploiting symme-
try we show in Step (ii) that an extension of [GSW99] allows for showing that
for any v € K, there is a T € Homeo™ (R"; R") (not just T € Homeo(R"; R™))
such that V(T7!(z)) = v(||x|]2). Then, it follows that 7" is homotopic to idgs
along a path in Homeo™ (R"; R"). In Step (iii), we use this map 7' to homo-
tope ©!(-; —VV) to a semiflow, denoted @, that has V o T~! as its Lyapunov
function. Again, 0 remains strongly GAS along the path. Next, we show in
Step (iv) that @' can be homotoped to ¢'(+; —0,). We conclude in Step (v).
(i) Since 0 is strongly GAS under & € F[X](z) and X satisfies Assump-
tion 3.1, there is a C'° Lyapunov pair (V,W), that certifies stability of 0 €
R™ [CLS98, Thm. 1.3], under any Filippov solution. Then, construct the
homotopy H : [0,1] x R™\ {0} — R"™\ {0} through non-vanishing vector
fields, defined by (s,z) — H(s,z) = (1 — s)F[X](x) — sVV(z). As for any
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€ (0,1}, (1—s)F[X]—sVV satisfies Assumption 3.1, plus (VV (x), H(s,x)) <
—(1 = s)W(z) — s||[VV(z)]|3 V2 € R™\ {0}, we find that 0 is strongly GAS,
in the sense of Filippov, under & € (1 — $)F[X](z) — sVV(x), for any fixed
s € [0,1]. To construct a homotopy on the level of semiflows, we follow Hart-
man [Har02, p. 93] and consider the following extended system:

s=0
s {:c € (1 - s)F[X](z) — sVV ().

As V' has compact sublevel sets (see Definition 1.3), any Filippov solution
to Xp is defined for all ¢ > 0, e.g., see [Kha02, Thm. 3.3]. Now since
(s,z) — H(s,z) is locally Lipschitz away from 0, we can appeal to the Picard-
Lindeldf theorem [Tes12, Thm. 2.2] and hence, by strong asymptotic stabil-
ity [CLS98, Def. 2.1] ¢f. Example 1.4, any solution to Yy is also unique,
which allows us to define the time-t map (s,z) — ¢'((s,z);Xy) for any
t > 0. In its turn, by considering the path [0,1] 2 s — ¢'((s,");Xg), we
see that this time-t map ' defines a homotopy from the semiflow under F[X]
to the (semi)flow under —VV. Specifically, we have that ©'((0,z);Xy) =
(0, ¢ (w; FIX])), ©"((1,2);Zn) = (1, ¢"(x; =VV)) and ¢'((s,0); Xn) = (s,0)
Vs € [0,1]. Now, for any fixed s € [0, 1], overload notation and define the
time-t map ¢'(+; (s, Xx)) := Tamr1 © ©*((s,+); Xy), for ma.,41 the projection on
the last n coordinates. It follows that this map checks out as a semiflow, since
To.nt1 18 continuous and for any = € R™ we have that

(1) ©°(z; (5, X)) = x;and
(1) 0 (" (5 (5, 2m)); (5, 2)) = 0" (25 (5, Zp)),  Vhi,ta € R
(ii) Griine, Wirth and Sontag showed that for our Lyapunov function V', we
can find a T € Homeo(R"; R"), with T'(0) = 0, such that V(T!(z)) = v(||z]]2),

for some 7 € Ky, smooth on (0,+00) [GSW9I9, Prop. 1]. We recall their
construction T'. Define (¢, z) +— (¢, x) to be the flow with respect to

o VV(z)
IVV ()l
It follows that, on the domain of ¢, V(¢ (¢,x)) = V(x)+¢. Now fix some ¢ > 0,

then define the map m, : R™\ {0} — V~(c) by z — 7.(z) := ¥(c — V(x),z),
that is, starting from z € R™ \ {0} you flow—either backward or forward—
along ¢ until you hit V=!(c). Then, due to initial work by Wilson [WJ67],
we know that V7=!(c) =~ S"! however, now—that is, after [GSW99] was
published, the resolution of the Poincaré conjecture® implies there must be a

3Specifically, Perelman provided the final step (S*) in proving the generalized Poincaré
congecture in Top. For some historical comments, see [Stil2].
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homeomorphism S : V~1(c) — S"!, for any n > 1. Next, define the map
Q:=Som :R"\ {0} - S"! and eventually the map T : R — R" by

o> T(a) i {wwx))@(x) v e R\ {0}

0 otherwise,
Now, it turns out that the particular choice of the homeomorphism S : V~!(c) —
S™~!is irrelevant for the construction of T" as in [GSW99, Prop. 1], as such, we
select S to enforce T' € Homeo™ (R™; R™). If T' € Homeo™ (R™; R"), we are done,
if not, we can compose S with a map reflecting a single coordinate, denoted
by p:S" ! — S eg., (x1,29,...,2,) = (21,22,...,—1,), to change the
orientation of T' (recall that deg(p) = —1 [GP10, Ch. 3]), that is, we use po S
instead of S. Thus, as T' can always be chosen to be orientation-preserving,
T (and equivalently T—!) can assumed to be a stable homeomorphism® and
hence T is isotopic® to idgn, e.g., see [Kir69] and [Moil3, Ch. 11].

(iii) First, we can always pick the homotopy H: [0,1] x R" — R" from
idg» to 77! such that 0 is mapped to 0 along the path in Homeo™ (R";R"),
e.g., for a homeomorphism K : R"™ — R" such that K(0) # 0, consider
the map = — L(z) := K(z) — K(0), with y — L7 '(y) = K '(y + K(0)).
Now recall that 0 € R™ is GAS under ¢'(-;—VV), d.e., V(o' (x;—VV)) —
V(iz) < — fot Wy (@™ (x; =VV))dr V(t, z) € Rag xR\ {0}, with x — Wy (z) :=

IVV (2)||2. Since H(s,-) is a homeomorphism with H(s,0) = 0, we also have
t
V(! ((s,2)i ~V)) = V(H(s,0)) < = [ Wl (H(s,2):~VV))dr,
0

for any (¢,z) € Ry x R™\ {0}. Next, define the semiflow $(-; s) through
H(s,-) o @'(5) = (5 =VV) 0 H(s, ). (3.1)

Note that @'(-;0) = ¢'(;; —=VV) whereas ¢'(;1) = T o ¢'(-;—VV) o T
Also note that continuity of [0,1] 3 s — @'(+;s), in particular, continuity
of [0,1] > s — H(s,-)™", follows from Homeo® (R";R") being a topological
group [Ared6] (endowed with the compact-open topology), i.e., combine that

4The stable homeomorphism theorem—stating that all orientation-preserving homeomor-
phisms of R™ are stable—connects to the annulus theorem (which was a longstanding con-
jecture) via the work of Brown and Gluck [BG64] and has a rich history, with the key steps
in the proof being provided by Kirby [Kir69] and Quinn [Qui82]. We point the reader to
the survey of Edwards in the edited book by Gordon and Kirby on 4-manifolds [Edw84].

®Indeed, as also mentioned in [GSW99], T cannot (always) be a diffeomorphism on R",
for otherwise we constrain ourselves to smoothly conjugate systems.
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the map Homeo' (R";R") > h ~ h~! is continuous with path-connectedness
being preserved under a continuous map. Then, by (3.1), we get

V(H(s, 3 (:9))) — V(H(s, P /W@ (5.7 (x:9)))dr. (3.2)

Now, using (3.2), define V(;s) € C°(R™Rsg) through = — Vix;s) =

V(H(s,z)) and similarly, define z — Wy (z;5) := WV(H( z)) Hence, for any
s € [0,1], we have V (3!(z;5); 5) — V(F(x; 5); s) < — fo Wy (@7 (x; s); s)dT < 0,
V(t,z) € Rog x R\ {0}. Note that z V(m) = V(x), z — V(z;1) =
V(T Hz)) = v(||lz]]2) =: V4(z) and = — Wv(x; 1) = Wy (T *(z)). Also, as
H (s,-) fixes 0, ‘7(, s) will always have the required compact sublevel sets.
(iv) Although the path from idg~ to 7! is merely through Homeo™ (R"; R"),
it is known that 7' can be chosen to be diffeomorphic on R™ \ {0} for n #
5 [GSW99] (the composition with p does not change this)®. Hence, the vector

field corresponding to ¢(-; 1), denoted F, is well-defined on R” \ {0}, i.e.,

L@ = DI @)YV (@) = Fla), va e R\ {0}, (33)

7=0

In general, F need not be continuous at 0, this, because DT need not be
continuous at 0. However, « can always be chosen such that 7" is C* on R"
with DT'(0) = 0 [GSW99, Prop. 1]. Unfortunately, V, is also by no means
smooth at 0 for any choice of v. In fact, the appropriate v € K, to guarantee
that T is suﬂiciently regular is of the following form. Let a € K be smooth,
define h(r) := [; a(7)dr and set v := ™. It follows that 7/(r) = 1/a(v(r)) is

smooth on (O +00), yet, lim, o+ /(r) = +00, e.g., r = 7(r) = r'/%. However,
see that on R™ \ {0} we have (VV,(z), F(z)) < =Wy (x), that is,
1: ~ —_
(el F)) < -Wr(o) voe R0 G

Thus, multiplying (3.4) by the function a € C°(R";Rs), defined through
z — a(z) = ||lzll2/7 (||x]]2), yields that V, € C>°(R";R>¢) and W, € C®(R™\

6Some comments are in place. Perelman’s work came after [GSW99], resolving the case
n = 4 (S3). Despite some claims in the literature, to the best of our knowledge, the case
n =5 (S*) is still open. As the generalized Poincaré conjecture is known to fail, in general, for
Diff (e.g., due to the existence of ezotic spheres [Mil56]), we emphasize that the existence
of these diffeomorphisms is due to Smale’s h-cobordism theorem (e.g., see [Sma62, Thm.
5.1]). To be more explicit, we can construct a h-cobordism between V~1(c) and a levelset
of z — ||z||3, e.g., by appealing to the same type of arguments as in [Jon24, Lem. II1.4].
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Figure 3.1: Example 3.4: on the left, the graph of v; around x = 0; and on the
right, the graph of v, around x = 0. In between, steps of the homotopy that connects
v; to vy, while preserving that = 0 is the global minimizer.

{0};R>0), defined by z — Vy(z) := 3||z||3 and z — W(x) := —a(x)WV(x),
comprise a C* Lyapunov pair for F , also recall Example 1.5. Equivalently,
one can observe that the level sets of V,, are standard spheres.

Then, as in Step (i), construct a homotopy through non-vanishing vector
fields on R™ \ {0}, in this case from F to —-VV, = —0,, with V, being a
Lyapunov function asserting stability of 0 throughout. Then, we show there is
homotopy from ¢'(-; F) to ¢'(-; —0,) along semiflows, such that 0 is GAS.

(v) Since we have constructed the desired (i.e., preserving stability) homo-
topy between any time-t map ¢'(-; F[X]) to ¢'(-; —9,), we just observe that
all these maps are continuous in ¢ so that we can conclude on the existence of

the homotopy from the semiflow ¢(-; F[X]) to ¢(-; —0,). O
As Proposition 3.2 is about ezistence, we provide some examples below.

Example 3.3 (Homotopic vector fields, preserving stability). It is known
that the polynomial ODE & = Xi(x) := (—z; + 122, —22) does not ad-
mit a polynomial Lyapunov function asserting 0 is GAS [AKP11]. A non-
polynomial Lyapunov function, however, is given by (z1,x2) — Vi(x1,22) :=
1log(1 4 %) + 123. To construct a homotopy from ¢(+; X1) to ¢(+; —0,), first
construct the straight-line homotopy from X; to —VV}, with stability asserted
throughout by Vi. Next, define V(-;s) := (1 — s)Vi + sV, for s € [0, 1] and
z — Vy(x) == 3||lz[]3. As for any s € [0,1], VV(z;5) = 0 <= z =0,
[0,1] 2 s — —VV/(+;s) parametrizes a homotopy from —VV; to —0,, along
vector fields that render 0 GAS, asserted by V(-;s). Although X; does not
admit a convex polynomial Lyapunov function, the negative gradient flow of
the Lyapunov function corresponding to X; does cf. [JS524]. o

The purpose of the following example is to illustrate the construction of
the homotopy that appears in the proof of Proposition 3.2.

Example 3.4 (Homotopy from invexity to convexity). Consider a coercive,
invex function (i.e., every critical point is a global minimizer) on R defined by
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x — vi(z) == 322+ 3 sin(x)?. Along the lines of the proof of Proposition 3.2, we
can find a map T such that v;(T!(z)) = v(|x|) := +/|z| (see that v(s)/7/(s) >
s for all s > 0), and a path from T to idg, as given by

+ s

2-(3/2)s
[0,1] x R > (s,2) — H;(s,x) := sgn(x) (1 2+ (1— s)g sin(x)2> ,

with H;(0,-) = T and H;(1,-) = idgr (e.g., v; = \/|Hi(0,-)|). Next, consider the
homotopy (s',x) = x/2+(3/2%" £ construct the path from v; to o+ v,(z) =
22, along continuous functions such that 0 is the global minimizer throughout”,
see Figure 3.1. For functions as simple as v; one can find simpler homotopies
(e.g., a straight-line), however, to the best of our knowledge, being able to
guarantee the mere existence of such a homotopy is new. Proposition 3.2
provides us with the existence of a homotopy from a smooth Lyapunov function
V to V,, along continuous® Lyapunov functions that assert 0 € R™ is GAS along
the homotopy. Differently put, we can find a homotopy from a coercive, invex
function, to a convex function, such that along the homotopy the minimizer is
preserved. This might be of independent interest. o

As we allow for a class of discontinuous vector fields, Proposition 3.2 al-
lows for an extension of the standard Hopf index, this has been pioneered by
Gottlieb, e.g., see [GS95]. See also [CRT08] for a Conley index applicable to
discontinuous vector fields and see [Kva21] for a hybrid Poincaré-Hopf theorem.

We point out that one could omit Step (i) of the proof of Proposition 3.2,
yet, as is also shown in Example 3.3, it is typically convenient to pass through
a gradient flow. We also remark that the origin plays no particular role in
Proposition 3.2, as it should. In fact, if X is such as in Proposition 3.2, yet, the
equilibrium point is now arbitrary, we can still construct a homotopy between
(3 F[X]) and ¢(-; —0,) such that along the homotopy some point is GAS.
For instance, the following family of time-t maps parametrizes a homotopy
between the flows corresponding to the ODEs & = —z and & = —(z — Z):
(t,x) = p'(x;8) = e to + s(I, — e '1,)T, for s € [0,1]. Indeed, sZ is GAS
along the homotopy (e.g., consider the Lyapunov function x — V(z;s) =
1 —\2
3( —57)%).

Next, we generalize Proposition 3.2 to smooth manifolds, which is almost
immediate as the GAS property heavily restricts the class of manifolds, e.g.,
see [BS70, Ch. V.3]. We assume that our manifolds are Hausdorff and second
countable. Regarding our vector fields, we assume simply the following.

"For a simulation of this homotopy, see wjongeneel.nl/figinvex.gif.
8Tt is not evident, and currently unknown, whether smoothness can be preserved through-
out the homotopy, see Step (iii) of the proof of Proposition 3.2.


wjongeneel.nl/figinvex.gif
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Figure 3.2: Example 3.7: on the left, some flow lines under (ITy').X; and on the
right, some flow lines under (HJ_\,l)*Y. In between, two steps of the homotopy that
connects (ITy ). X to (ITy').Y, through vector fields that render S GAS on S?\ {N}.

Assumption 3.5 (Vector field regularity on M™). Our vector fields are locally
Lipschitz on M™.

Indeed, one can work with less regular vector fields and fully generalize
Proposition 3.2 to manifolds, i.e., via [MT11, Cor. 13]. We refrain from
introducing further technicalities and work with Assumption 3.5.

Theorem 3.6 (Stability preserving semiflows). Let M™ be a smooth manifold,
forn #5, and let p* € M™ be GAS under both the vector fields X and 'Y, with
both X andY satisfying Assumption 3.5. Then, the flow p(-; X) is homotopic
to o(+;Y), along semiflows that preserve p* being GAS.

Proof. First, since p* is GAS under X, there is V' € C*(M™;R>() such that
X(V)=LxV <0on M\ {p*} [FP19]. Now fix some Riemannian metric,
which exists [Leel2, Ch. 13], and define the Riemannian gradient grad V. It
follows that —grad V(V) < 0 on M™ \ {p*}. Then, for any ¢t € R, the corre-
sponding time-t map p — ¢'(p; —grad V') is a diffeomorphism. This implies
there is a difftomorphism ¢ : M™ — R"™ [WJ67, Thm. 2.2]. Next, define
the diffeomorphism 1; by M"™ 3 p — zZ(p) = ¢¥(p) — Y(p*) € R", such that
U(p*) = 0. Now set z := ¢(p) and consider

i = —Di( () X (7 (2)) = Xo(x).

Indeed, the vector field Xy meets the criteria of Proposition 3.2. Then, observe
that o!(+; X) = 1 Top!(+; Xg)ot), which implies that ©'(-; X) can be homotoped
to 15_1 opl(;—0,) 0 1; such that p* remains GAS along the homotopy. We can
do the exact same for the vector field Y. Then, since 1; works for both X and
Y we can conclude by transitivity. O]
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Example 3.7 (Equilibria on S?). To exemplify Theorem 3.6, one might think
of rendering the South Pole S an attractor on S?\ { N}, for N the North Pole.
To that end, consider the vector fields X and Y on R?, defined through

X(x):=(=0.1zy — 29)0y, + (1 — 0.122)0,,,
Y (x) (—zy — :le%)(()ml + (—zo + x%xg)(?m.

The origin is GAS under both X and Y (e.g., consider the canonical quadratic
Lyapunov function). Let IIy be the stereographic projection from S*\ {N} to
R2. Then, to transform X and Y to vector fields on S?\ { N}, we construct the
pushforwards (I1"). X and (ITy').Y, see Figure 3.2. Exploiting this structure
and our previous work [J524], we can construct an explicit homotopy between
these two vector fields that preserves stability of S on S\ {N}°. o

Remark 3.8 (Weaker notions of stability). In general, one cannot relax GAS
to mere stability. A reason being that the (Hopf) index of Lyapunov stable
equilibria is not fixed [KZ84, Sec. 52], yet, this index is a homotopy invariant
(e.g., for GAS the index is fixed). In Section 4, we do elaborate on ISS. o

Input-to-State Stability As in [GSW99], we can also study “disturbed”
systems of the form

i = f(z,d), (4.1)

where f : R" x D — R", with D C R™, is continuous, and locally Lipschitz
on R"\ {0} x D. We let &, denote the set of measurable, locally essentially
bounded functions R O I 5t — d(t) € D, with d(-) € Z overloading nota-
tion, indicating any function of appropriate length. Whenever relevant, we do
assume that our solutions are forward complete (e.g., we can appeal to [AS99,
Cor. 2.11]), we denote them using semiflow notation as ¢'(xg, d(+)).
Leveraging intuition from linear systems theory, input-to-state stability
was derived as a stability notion invariant under coordinate transformations
(homeomorphisms that fix 0) [Son08]. In particular, a system (4.1) is said to
be Input-to-State Stable (ISS) when there are f € KL and v € K such that

" (o, d(-))| < max {B(||zoll, 1), Y(lldllo) }

for all t > 0, zp € R™ and any d(-) € . For the corresponding Lyapunov
theory, see [SW95]. Constraining the transient, a system (4.1) is said to be

9For a numerical simulation of the homotopy, see wjongeneel.nl/figStereoS2.gif.
Note that the homotopy is through the canonical vector field indeed.


wjongeneel.nl/figStereoS2.gif
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Input-to-State Exponentially Stable (ISES) when there are constants M,a €
R.g and a a € K such that

" (o, d())|| < max {Me™"||zo]], a([|d]|) } (4.2)

for all t > 0, zp € R” and any d(-) € 2. It can be shown [GSW99, Thm.
3], that there is always a coordinate transformation that brings an ISS system
into one that is ISES with normalized constants, that is, M =a = 1.

Inspired by the above, it seems plausible that & = —x 4+ d fulfils the role of
“canonical 1SS system” on R™. For instance, recall that the solution satisfies
o' (x,d(+)) = e txg + f(f e~ =1 d(r)dr for any t > 0, 7o € R and d(-) € 2.
Therefore, [|¢"(zo,d(+))|| < max{2|e™|||zo| + 2 [ |e~*"|d7||d|}. In that
sense, © = —x+d is canonically ISS due to the simple comparison functions we
can employ. Moreover, set « — S(x) := 3||z||3, it follows that (9,5(z), —z +
dy < 2(||d||3 — ||=||3) for all z,d € R™ and thus

/ o (o, d()I3dr < [lzoll2 + / ld(r) 27 (4.3)

for all t > 0, zp € R™ and any d(-) € 2, e.g., see [Sch00, Ch. 8]. However,
this means that £ = —x 4 d can be understood, in particular, as a canonical
system with a finite (unitary) linear Ly gain. Indeed, [GSW99, Thm. 4] shows
that an ISES system can be transformed into a system with such an L, gain.

Here, we focus on homotopies through coordinate transformations of x and
d, for otherwise we could “remove” the disturbance, e.g., consider f(x,6d)
with 6 € [0, 1]. Now, to exemplify why the existence of a homotopy from any
ISS system, through coordinate transformation, to © = —x + d is too strong,
consider the following.

Example 4.1 (No canonical system). Consider the linear ISS system

(- 66 o). a

or in short: @ = Az + R(d). As R ¢ Homeo'(R? R?), there is no contin-
uous path from idgz to R (or to R~ for that matter), through coordinate
transformations. However, if we pick 2 — S(z) := i||z||3 as our storage func-
tion then we again find that the system (4.4) satisfies (9,5(x), Az + R(d)) <
2(|d]|3 — ||lz||3) and thus, (4.4) satisfies the canonical L, gain bound (4.3). o

The way to interpret the upcoming proposition is as follows. Given a
solution under (4.1), assumed to be ISS. This solution is understood as fixed
data and now someone gradually applies a change of coordinates to both x
and d. It turns out that by doing so, one can always transform this solution
data into data satisfying (4.3), thus, into a system like & = —x + d.
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Proposition 4.2 (Homotopy from ISS into a canonical Ly gain). Let n # 5
and suppose that the system (4.1) is ISS, then we can always find a continuous
path of coordinate transformations of both x and d, transforming the solutions
to (4.1) into solutions of a system satisfying the canonical bound (4.3).

Proof. First, by [GSW99, Thm. 3] and Proposition 3.2, if (4.1) is ISS, we can
always find a continuous path of coordinate transformations of x, transforming
the solutions to (4.1) into solutions of a system that is ISES with normalized
constants and admits a representation of the form (4.1).

Second, as we may suppose that (4.1) is ISES with normalized constants,
then by [GSWO99, Thm. 4] and arguments akin to Proposition 3.2, we can
always find a continuous path of coordinate transformations of d, transforming
the solutions to (4.1) into solutions satisfying the canonical L, bound (4.3).
To be somewhat explicit, since (4.1) is ISES, then by (4.2), if

|2 > e*a (sup,epo ) 1d(7)]2) (4.5)

then ||¢'(z,d(-))|l2 < e !||z||2 for all t € [0,s]. Let V : R" — Rsq be defined
through x — V(x) := ||z]|3, then if (4.5) holds we readily get

V(¢! (,d(-)) < eV (2) (4.6)

for all ¢ € [0,s]. This must be true in particular for constant disturbances,
say t + d(t) == d € D for all ¢ > 0, thus, by subtracting V(¢"(z,d")) =
e 2Y|x||3 = V(z) on both sides of (4.6), dividing by ¢ and considering ¢t — 0T
we get that ||z[|2 > a(||d'||2) implies that L.V (z) := (0,V(2), f(z,d')) <
—2V (z) < —=V(x). Now, akin to [SW95, Rem. 2.4], define

&(T) = sup 2. <f(€a u)7€> + V(f)

€ll2<a(r) ull2<r

Evidently, as a € K, then for ||z||2 > a(]|d'[|2), we have that
LycanV(w) < =V(x) + a([|d']|2)- (4.7)

On the other hand, for ||z||2 < a(||d'||2), (4.7) also holds true. As d' € D was
arbitrary, (4.7) holds true for any d’ € D. Now, let f(-,v) := f(-, R"'(v)) and
see that if the goal is to get Lz V(z) < =V(z) + |v]|3, then we could select
R™ > z — R(z) := (a(||z]l2))"%(z/]|z]|2), with R(0) := 0, which is C* on
R™\ {0} and continuous at 0 as & € K. For R to be orientation preserving,
we can again introduce a map p, e.g., z — (a(||z][2))*?p (2/]|]|2) - O
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5 A view from optimal transport Suppose there is a smooth Lyapunov
function V, asserting that 0 € R” is GAS under some ODE & = X(z). To
refine our understanding beyond Theorem 3.2 and towards a similar result for
vector fields, we note that our desire relates to optimal transport (OT). Let
o, 1 € Z(R™) be Borel probability measures on R™. Now suppose that dyug =
koe VdA" and du; = kieVed\", for kg, k; normalization constants. Can we
transport pg to pp along sufficiently regular measures, preserving unimodality?
Suppose the answer is yes, then we can construct a path of densities [0,1] 3 s +—
f(z;s), with f(z;0) = e™V® and f(x;1) = e "4@. Now, if f is sufficiently
regular, we can conclude that Vlog f(x; s) renders 0 GAS, for each fixed s. It
is particularly interesting that the standard Gaussian measure results in the

canonical ODE & = —z. In what follows we touch upon this viewpoint.
The quadratic “Monge formulation of OT on R" is as follows, let u,v €
Py(R") = {p e Z(R"): [|z]3du(z) < +oo}, then we want to solve

T:TH#Hu=v

wt [ - T@IRduG) (5.1

where T#pu denotes the pushforward of p. Brenier [Bre9l] showed that if
(<< A", then, there is a convex map ¢ : R® — R, being p-a.e. differentiable,
such that Vo#u = v solves (5.1). We do a simple example.

Example 5.1 (Gaussian optimal transport). Given two zero-mean Gaussian
measures Loy and pp on R™ with covariance matrices ¥y and ¥;, the op-
timal map in the sense of (5.1) is simply x — T*(x) = Az, for A =
251/2(2[1)/2212(1)/2)1/2261/2’ e.g., see [PC19, Rem. 2.31]. Then, for u(:;s) :=
T(-;s)#puo with T'(+;s) := (1 — s)idgn + sT" and s € [0, 1] we have that

2
s () =5 (L= 9)%0 + S@é/gzlzé”)”) 2 - 0,

Now consider the density R 3 2 — p(x;5) 1= r(s) Le 2@26) 712 for g(s)2 :=
(2m)"det(X(s)) and set V(-;s) := —logp(-;s). Let 21 = I, then it follows
that the family of ODEs @ = —VV(x;s), comprises a homotopy from & =
—VV(x;0) to & = —z, through vector fields such that 0 is GAS (e.g., consider

the Lyapunov function z — V (z;s) := Ha,X(s) ). o

6 Conclusion and future work We have provided a step towards address-
ing Conley’s converse question in some generality, yet, many open problems
remain. Although directly working with flows has benefits, e.g., see [ADJ23],
the main open problem is the extension to vector fields and generic attractors.
Several other questions are as follows.
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Open problem 1: characterize stability of (2.1) throughout the homotopy.
Open problem 2: prove or disprove that Proposition 3.2 holds for n = 5. A
counterezample would disprove the smooth Poincaré conjecture for S*.
Although we work with semiflows, to leverage converse Lyapunov theory we
rely on vector fields generating them. Removing this condition is non-trivial,
illustrated by [FP19, Sec. 7], but also not futile, as illustrated below.

Example 6.1 (An attractor on the mapping torus). To construct an example
of a semiflow that does not correspond to a vector field, one can appeal to maps
with a “negative orientation”, e.g., a smooth vector field X always results in a
flow (+; X) such that the diffeomorphism '(-; X) is isotopic to the identity'.
To that end, consider the map R 3 z +— f(z) := —ax, for some a € (0,1), and
the define the mapping torus of (R, f) through My := {(z,t) € R x [0,1]}/~
for (z,1) ~ (f(z),0). Now, the suspension of f (under the ceiling function
c(x) = 1) is the semiflow ¢(-; f) defined through ©'((z,s);f) = (f"(z),s')
where the pair (n, s’) satisfies n+ s =t +s with 0 < &' <1 [BS02, Sec. 1.11].
It follows that {0} x [0, 1]/~ is an attractor. o

Open problem 3: prove or disprove that Proposition 5.2 holds for all semiflows
that render 0 GAS (not just the ones generated by vector fields).

Section 5 touched upon connections with OT. Motivated by work in the
context of geometry processing [SV19], we believe that more work is warranted.
Open problem 4: elucidate what OT can tell us about the existence of stability
preserving homotopies on the level of vector fields, and vice versa.

Our work also benefits from more explicit results, e.g., see [BBK21].

Continuation and the Conley index We aim to contribute to better un-
derstanding to what extent Hopf’s degree theorem [Mil65, p. 51] extends to
equivalence classes of dynamical systems. The most fruitful framework in this
regard is Conley’s theory [Con78] and we briefly highlight his index theory to
elucidate our central question.

In the context of semiflows, Conley’s index theory can be set up as fol-
lows [Ryb8&7, Ch. 1]. Given a semiflow ¢ on M", then, S C M™ is said to be
an isolated (positively) invariant set when there is a compact set K C M",
called an isolating neighbourhood, such that S = 1(K,p) := {p € K : ¢'(p) €
Kvt > 0} C int(K). Now, a pair of compact sets (N,L) C M™ x M™ is
said to be an indez pair for S when (i) S = I(cI(V \ L),p) and N\ L is a
neighbourhood of S; (ii) L is positively invariant in N; and (iii) L is an exit
set for N. Then, the Conley index of S is the homotopy type of the pointed
space (N/L,[L]). This index is independent of the choice of index pair. Now,

19Consider the homotopy [0,1] 3 s + ™1 =%) from 7 to ¢° = id.
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if some N can be chosen to be an isolating neighbourhood throughout a ho-
motopy [0,1] 3 s — ¢(+;s), then, the Conley index is preserved along that
homotopy and we speak of continuation (of the index). The existence of the
homotopy implies continuation, but to what extent does an equivalent Con-
ley index imply the existence of an index preserving homotopy? This is the
starting point of this note and this is why we speak of a “converse question”.

Added in proof Recently, Kvalheim and Sontag provided a generalized
Hartman-Grobman theorem that allows for resolving open problem 2 [KS25,
Thm. 2] (e.g., first homotope to a smooth flow), see also [Jon25]. Moreover,
Kvalheim addressed the extension to vector fields with outstanding generality
[Kva25], see [[Kva25, §8.4] for an example that affirms our hopes at the end of
Section 2.
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