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Abstract— Recently, Kvalheim and Sontag provided a gener-
alized global Hartman-Grobman theorem for equilibria under
asymptotically stable continuous vector fields. By leveraging
topological properties of Lyapunov functions, their theorem
works without assuming hyperbolicity. We extend their theorem
to a class of possibly discontinuous vector fields, in particular,
to vector fields generating asymptotically stable semiflows.

Index Terms— asymptotic stability, Hartman-Grobman lin-
earization, Koopman theory, semiflow

I. INTRODUCTION

Linearization, in all its forms, remains one of the most
powerful techniques to handle nonlinear sytems, e.g., there
is machinery that is widely, rigorously and easily applica-
ble. Unfortunately, one can typically only say something
locally. Therefore, within the broader field of linearization
techniques, Koopman operator theory is of great interest as,
amongst other things, the analysis need not be local [1].
However, in a recent survey on modern Koopman theory we
find the following: “..., obtaining finite-dimensional coordi-
nate systems and embeddings in which the dynamics appear
approximately linear remains a central open challenge.” [2,
p- 11 and ..., there is little hope for global coordinate maps
of this sort.” [2, p. 4].

Clearly, these comments relate to the desire of obtaining
tools akin to the celebrated Hartman-Grobman theorem (e.g.,
see [3]); ideally, tools that are applicable globally and
without relying on hyperbolicity. Indeed, a recent global
extension of the Hartman-Grobman theorem by Kvalheim
and Sontag exploits stability, and in particular Lyapunov
theory, to overcome the restrictive reliance on hyperbolicity
cf. [4]-[7]. Here, the intuition is that the Lyapunov function
replaces the Morse function. We remark that in the context of
topological embeddings (i.e., not necessarily mapping onto
a linear space), hyperbolicity has been relaxed before, also
by exploiting stability, e.g., see [8, Cor. 4].

Now, elaborating on [7], we can construct a similar result
when the vector field is not necessarily continuous at the
equilibrium point, see Theorem I1.2. As in [7], we build upon
the topological results in [9] and [10]. Although motivated
by the question of linearization, results like these sharpens
in particular our understanding of topological equivalence.
Differently put, these results further sharpen our under-
standing how to distinguish dynamical systems. To further
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motivate this particular setting, we look at dynamical sys-
tems that might fail to be continuous at the equilibrium
for several reasons: this setting captures some closed-loop
systems where discontinuous feedback was applied (which
for several problems is necessary); this setting captures a
class of systems that render the equilibrium finite-time stable;
and this setting relates to studying robustness, e.g., through
inclusions. We point the reader to, for instance, [11] for
more information. We already mention that we abstract this
setting by simply saying: we study systems that generate
asymptotically stable semiflows, we return to this below.

To illustrate our setting, the running example we have in
mind is a normalized vector field on R™ of the form

S R\ {0
i= ) ol CEFNO M

0 otherwise,

where the solutions will be understood in the sense of
Filippov', with F denoting the Filippov operator [13, p. 85].
For instance, the solution corresponding to (1) becomes

t
1—— t <
( ||xz) vootslell g

0 otherwise,

(t,z) = ¢i(z) =

which is not a flow, but a semiflow. The reason being,
(t,x) — ¢! (x) need not be well-defined for ¢t < 0, e.g.,
consider ¢! (0) for any ¢ < 0. Hence, we should restrict the
domain of ;. More formally, given a topological space M,
a continuous map ¢ : M x R>¢ — M, usually written as
(w,t) — !(x), is said to be a semiflow when ©° = idy, and
ot = p*tt forall s,t € R>, that is, the identity- and the
semi-group axiom are satisfied, as is the case for (semi)flows
generated by smooth ODEs. For a thorough stability analysis
of semiflows, we point the reader to [14].

Indeed, as we will study semiflows that are possibly
generated by vector fields, we consider sufficiently regular
manifolds and not arbitrary topological spaces. Then, in
general, given a semiflow ¢ on some topological manifold
M, we speak of a linearizing (with respect to ) homeo-
morphism h : M — R™ when h o ¢t = ¢4 o h for all
t € R>o and some matrix A € R™" (i.e.. ' and ' are
topologically conjugate). Observe that the Hartman-Grobman
theorem provides us with a particularly convenient, but local,
linearization (e.g., A is of the form DX (z,) for some C!
vector field X and hyperbolic equilibrium point z.). We
emphasize that this type of linearization is a deliberate and

ISee [12] for a comparison of solution frameworks.



convenient choice, but we could have focused on another
canonical system or even another type of transformation.
Before we continue, let us emphasize why these lineariza-
tion questions are non-trivial. To that end, consider two
scalar, asymptotically stable, linear ODEs & = —ax and
y = —by, with a, b > 0. Suppose we set y = h(x) := kz, for
some k € R\ {0}. It follows that (e~ % (k™ 1y)) = e~y
must hold for all ¢ > 0 and y € R, hence, a = b must hold.
Instead of a linear homeomorphism, one readily finds that,
for instance
s h(z) = {sgn(x)|:c s

z € R\ {0}
0 otherwise

does check out, i.e., h(e~%x) = e~*'h(z).

Now, when it comes to linearizing a system like (1), the
first obstruction that comes to mind might be a lack of
continuity at the equilibrium point, however, a more funda-
mental issue is that due to the finite-time stability property
of such a semiflow, there cannot be a homeomorphism h
such that the conjugacy h o ¢} o h™! = e~*In holds true
for all (t,h='(y)) € dom(yp,), for otherwise § = —y
would correspond to a finite-time stable system. With this
observation in mind, in this short note we show to what
extent semiflows corresponding to vector fields like (1) can
still be “linearized”. We emphasize that we will not consider
a reparametrization of time.

Notation. We let B(0,r) := {x € R" : ||z|l2 < r} be the
open ball of radius 7, centered at 0 € R™, with B(0,r)¢ :=
R™\ {B(0,7)} denoting its complement. With cl(1¥) and
OW we denote the topological closure and manifold bound-
ary of W, respectively. The symbol ~; denotes topological
equivalence, whereas ~;, denotes homotopy equivalence. A
continuous function v : R>¢g — R>¢ is of class K, when
~(0) = 0, ~ is strictly increasing and lim;_, 4 o Y(s) = +00.

II. MAIN RESULT

On R"”, the vector fields we consider are possibly set-
valued at 0, locally essentially bounded on R™ and locally
Lipschitz on R™ \ {0}, e.g., like (1). It is known that
under these assumptions, F[X] is upper semi-continuous and
compact, convex valued, which allows for a smooth converse
Lyapunov theory, e.g., see [15]. Indeed, one can do with
significantly less regular vector fields. However, we focus
on examples akin to (1) and keep the presentation simple.

For the appropriate generalization to manifolds, any man-
ifold M we consider is smooth, second countable and Haus-
dorff (to appeal to Whitney’s embedding theory, e.g., see [16,
Cor. 6.16]). Then, a set-valued vector field F' : M = T'M
(e.g., think of F[X]) is said to satisfy the basic conditions
when it is a locally bounded map, outer-semicontinuous and
F(z) is non-empty, compact and convex for all z € M [17,
Def. 5]. These basic conditions suffice for a smooth converse
Lyapunov theory [17, Cor. 13] via [18]. In particular, we
consider the following class of vector fields.

Assumption II.1 (Vector field regularity on M, conditioned
on a point ' € M). Given a point ' € M, our vector fields

t— ©'((p1,p2); Xo)

(p1,p2) Xo
I\

* 0
D)

B

Fig. 1: Some orbits corresponding to the vector field (3),
plus a typical element-wise solution starting from a point
(p1,p2) € R2. Observe the difference in convergence (finite-
time vs. asymptotic).

t

are locally essentially bounded on M, possibly set-valued at
a’ and locally Lipschitz on M \ (O0M U {z'}).

Suppose that X complies with Assumption II.1, see that
after smoothly embedding M into some R*, the vector field
in new coordinates still satisfies the conditions of Assump-
tion IL.1. Then, it is known that under Assumption II.I,
the differential inclusion that corresponds to the Filippov
operator (i.e., applied after embedding M), satisfies the basic
conditions from above. For simplicity of exposition, however,
we will now directly work with embedded submanifolds
M C RF (generalizations are of course immediate).

Also, see that Assumption II.1 only allows for mildly
discontinuous vector fields X akin to (1), i.e., the local
boundedness is only relevant for a neighbourhood of 2’ € M.

Let X be a vector field on an embedded submanifold
M C R* that complies with Assumption II.1, then, from now
on, the corresponding (Filippov) solutions (t,p) — ¢'(p) to
the differential equation & = X(z), are understood to be
absolutely continuous in ¢, on compact intervals Z, and such
that they satisfy

d

&st(p) € FIX](¢'(p)) for ae. t € T.

s=t

We study (strong) (global) asymptotic stability of equi-
libria under these solutions and point to [15, Def. 2.1] and
[17, Sec. 2] for further details. Note in particular, that under
Assumption II.1, we will have uniqueness of solutions if we
set ' to be the attractor, this, thanks to stability.

Our main result consists of two cases, with case (I) being
reminiscent of (1) on all of R™ whereas case (1I) captures, for
instance, (1) defined on a bounded domain (i.e., this is why
we consider the possibility of 0M # & in Assumption IL.1).

Before stating the result, let us clarify the inherent diffi-
culties with semiflows. Let B(x,) be the basin of attraction
of x, € M under some flow ¢. In [7], the authors construct
their linearizing homeomorphism by exploiting that B(xz) \
{4} ~ R x S*71, that is, they exploit that R x B(z.) C
dom(p). In the case of semiflows, one might define the
map 7.7 : B(z.) \ {z.} — Rx¢ via T.F(z) := inf{t >
0 : p'(z) = z.} and hope to use (—oo, T, (z)) instead of
(—00, +00). A problem is, even under Assumption I1.1, 7.7



Fig. 2: Visualization of Theorem II.2: any asymptotic stable
semiflow (i.e., a semiflow such that some fixed point z, is
asymptotically stable with basin of attraction B(z.)) can be
transformed through a topological conjugacy, “practically”,
to the canonical asymptotically stable flow corresponding to
T = —ux, that is, the conjugacy holds outside any selected
neighbourhood of z, (e.g., outside B(0,7)).

cannot be guaranteed to be continuous. For instance, consider
the vector field X, on the plane, defined on R?\ {0} through

. —ZT
@1) = Xo(x) := <_ 72 ) 3)
2 22| + 27

with X((0) := 0, see Figure 1. In this case, T, is discontin-
uous at {(0,z2) : z2 # 0} (jumping from |z2| to +oo, one
may select (z1,22) — V (21, 22) = 2% + 23 as a Lyapunov
function to assert stability). Hence, in the following proof
we will look at the smallest ¢ > 0 such that ¢(x) enters a
neighbourhood of x, instead.

In the following, closed refers to closed in the subspace
topology, not “compact and without boundary” as is custom-
ary in differential topology. We have visualized the theorem
in Figure 2.

Theorem IL.2 (A global Hartman-Grobman theorem, without
hyperbolicity, for asymptotically stable semiflows). For M C
R* a closed, smooth, n-dimensional embedded submanifold,
let ., € M be asymptotically stable, under a semiflow ¢
(i.e., a Filippov solution) generated by a vector field that
satisfies Assumption II.1 for x' := x, and let B(xz,) C M
be the corresponding basin of attraction.

(I) Suppose that (—o0,0] x B(x,) \ {z.} € dom(p),
then, for any r > 0 there is a homeomorphism h, :
B(z.) — R™ and a v, € Ks such that for all
y € B(0,r)°

hr © 0| B(a.) © h;1|B(O,T)c (y) = et

‘B(O,T)C (¥)
4)
holds for all t such that 0 <t < ~v.(||lyll2 — r)-

(II) Suppose that (—00,0] x B(z,) \ {z«} € dom(p),
then, for any r > 0 there is a homeomorphism h, :
B(zy) = R™ a v, € K and a R > r such that for
all y € cI(B(0, R)) \ B(0,7), (4) holds for all t such
that 0 <t < v.(||lyll2 — 7).

Proof. The proof is an extension of that of [7, Thm. 2]. We
follow their arguments and notation to a large extent.

We start with (I). By asymptotic stability of z, and
Assumption II.1, there is a C'*° Lyapunov function V :
B(z.) — R corresponding to the pair (z.,¢) [15], [17],
[18]. Now consider V ~!(g) for some € > 0. As V~"1(e) ~,
S7—1[9], then, by the resolution of the topological Poincaré
conjecture, there is always a homeomorphism P : V~1(g) —
S»~!. The role of mapping to S®~! is really to “straighten”
the dynamics, the symmetry of S~ ! is less important.

Set L. := V~!(¢) and U. := V~1([0,¢)) to define the
map 7.7 : B(xz.) \ U. — Rx¢ through 7. (z) := inf{t >
0 : ¢'(xz) € L.}. Following similar arguments as in [19,
Thm. 5], it follows that 7. is continuous on B(x.)\ U.. As
discussed above, we cannot simply set € := 0. Now, define

W= |J (=00,0] x {z} SR x L,
z€L,.

then, thanks to continuity of 7" and the standing assump-
tions (i.e., away from z, we can move backwards indef-
initely, but forwards we might converge in finite-time) it
follows that (¢, z) — ¢'(z) defines a homeomorphism from
W to B\ U, with inverse g = (7,p) : B\ U. —» W, i.e,
p(x) € L. and o™ (p(z)) = =.

However, it will be more convenient to define the inverse g
through ¢~ ") (p(x)) = x so that 7(x) — T+ (p(z)) = 0
for B\U. >z — L..

The homeomorphism A from [7], as defined through = —
h(z) := e"@ P(p(x)), was designed for flows and relies
on 7(x) - —oo for x — z,. In particular, their domain
of 7 is B(xy) \ {z.«} and not B(z,) \ U.. Thus, we need
to rescale. In particular, consider the homeomorphism = —
W (z) :=e” @ P(p/()) from B(z,) to R, with 7/ defined
on B(x,) \ {z.} through

T(l‘) .I'EB(.’E*)\UE
In (Vi:v)) otherwise. )

Now, define the map T, : (L. UU,) \ {z.} — R>( through
T (x) = inf{t > 0: ¢ '(x) € L.}, and eventually p’ on

S

B(xy) \ {z.} via

7'(z) :=

x € B(z,) \ Ue
otherwise.

At last, set h'(z,) := 0. Regarding continuity, observe that
forx € L., we have 7(z) = 0 and for U, > © — L. we have
7(x) — 0. Moreover, for z — x, we have that 7/(z) —
—o0 and thus e (*) — 0 such that thanks to compactness of
L. we have h(x) — 0. Continuity of 7. follows again from
[19, Thm. 5] and continuity of A’ —1 follows, for instance,
from an open mapping argument (e.g., see [16, Thm. A.38]).

Following [7], see that for any x € B(z.) \ U we
have p'(¢'(x)) = p'(x) and for sufficiently small ¢ > 0
we have 7(¢'(x)) = 7(z) — t (e.g., see that p'(z) =
e (e™™@ (p(x))) = T @) (p(a)).

Specifically, see that 7/(¢!(x)) = 7(x) —t for z € B(x.)\
U. and t < T (z) with T.F (z) > 0 for x € B(xy) \ (Le U
Ue).



Now, let y := h/(x), then z € L. = y =
h'(z) € S"~'. Hence, (5) implies that outside of B(0,1),
the semiflow of the conjugate system, that is, (¢,y) —
B o ¢ p(z,y 0 W'~ 1(y), is equivalent to (¢,y) — e 'y, for
t <TH(x)=TrF(K"(y)) and y € B(0,1)°. To recover h,.
of the theorem, simply scale h’ by r to scale the radius of
the ball (recall that P : L, — S*~1).

At last, define v, : R>¢g — R>( through

{7 0 b oy @) llyllz = s+ 7}

It follows from, for instance, Berge’s maximum theorem
[20, p. 115] that +, is continuous and from the fact that
on B(x,)\ {z«}, ¢'(z) extends indefinitely backwards, that
~r — +oo for ||y||2 = +o0. Hence, as by properties of ¢, V
and Tj , ¥ 18 strictly monotone, we have that 7, € K.

To continue with (1), the arguments are almost identical,
yet, now we need to carefully deform B(x,)\{x,} around all
its “boundaries”, not only around x,. Although we keep the
same notation as for (/), one should understand the Lyapunov
function V in the context of (II).

To start, pick some C > ¢ and set Lo := V~1(C) and
Uc := V=1[0,C)) to define the map T : (Lc U Uc) \
U. — Rxq through T (z) = infy{t > 0: ¢ '(x) € L¢}.
Now, if we define

We = J [-T5 (2),0] x {2} CR x L,
x€L,

s y(s) == yien]Rf"

then, (¢, z) — ¢'(z) yields a homeomorphism from W¢ to
(Le UU)\ U C Bl \ {a.}.

To proceed, we will effectively “linearize” on this compact
set Koo := (Lc UUc) \ Ue = V71([¢, C]), accommodated
by appropriate deformations on the remaining space.

With this construction in mind, consider now the home-
omorphism z — he(z) := €™ @) P(pc(x)) from B(z.,) to
R™, with again ho(x,) := 0, po := p’ and with 7¢ defined
on B(x,) \ {z.} through

T € B(:E*) \ K&C
T e K&C

otherwise.

Note that by coercivity of V, we have 7¢(z) — +oo for
x — 0B(x,), with € B(x,) \ {z.}.

Again, we can multiply ho by 7 to rescale. In this case,
R is given by inf, e, 7 - e™(*) | which is attained due to
compactness of L¢ and continuity of 7¢. As 7¢(x) = 0
for v € L, and C > e, we have that R > r. Note, this
exponential term defining R is exactly what one should
expect, given that we do not reparametrize time (e.g., we
should have r = e~TR for some appropriate T > 0).

At last, we can also employ 7" and ~, again, subject to
constraining their domain appropriately. O

Of course, if ¢ happens to be a flow (ie., t € R),
Theorem I1.2 is also true, but slightly conservative as there
is no need to construct B(0,r) and the like ¢f. [7, Thm. 2].

r. 67/(:1:)

[l2 [ll2

Fig. 3: The maps = — 7/(z) and 2 — r - e” ®) from
Section III-A. Recall that we have set ¢ such that V~1(g) =
L. = S"! such that 7/(x) = In(||z||3) for ||z||z2 < 1 and
7'(x) = ||z]|]2 — 1 for ||z||2 > 1.

We also emphasize that we merely show that there is a
homeomorphism h,., one should not expect to be able to
differentiate through h,, e.g., see Section III and Figure 4.

Remark ILI.1 (Asymptotically stable semiflows are practi-
cally indistinguishable). Theorem II.2 shows that, up to a
change of coordinates, every asymptotically stable semiflow
is “practically” topologically conjugate to the canonical
semiflow (y,t) — e 'y. Here, “practically” means that for
any (e.g., arbitrarily small) neighbourhood U C B(z,) of
T4, we can find a homeomorphism that gives rise to the
conjugacy on B(z.)\ U for sufficiently small ¢. This means
that, up to a change of coordinates, all these asymptotically
stable semiflows are practically indistinguishable. This seems
especially interesting when the true system is finite-time
stable and we happen to work with coordinates that give
the impression (i.e., on B(0, 7)) that the stability is merely
asymptotic, see Section III-A below. Clearly, the converse
is also interesting, as illustrated in Section III-B. We believe
these observations have ramifications for data-driven learning
of stable dynamical systems.

III. EXAMPLES

To exemplify Theorem II.2 and utilize the semi-
constructive nature of its proof, we discuss case (I) (as case
(II) follows as a corollary). For the notation, we refer to
Theorem I1.2 and its proof.

A.

Specifically, regarding (1) on R™, note that z — V() :=
%]|#(|3 checks out as a Lyapunov function? so that B(z,) =
R"™ and z, = 0. Indeed V=1 (e) = {z € R" : ||z[]2 = v2¢},
so we simply select ¢ := % such that P : V=1(g) — St
becomes the identity map on S"1.

As, T (x) = 1 —||z||2, we get that z — p'(z) = x/||z||2
for all z € B(z,) \ {z.}. Then since ¢; ) (p(z)) = =

/

2Indeed, this Lyapunov function even certifies finite-time stability as V<
—%V"‘ for a = % e.g., see [21].



we get that 7/(z) = ||z]]2 — 1 on B(z) \ Ue and 7/(x) =
In(||x||3/2¢) on U. \ {x.}. See Figure 3 for a visualization
of the map 7'.

Now, the homeomorphism h, : R” — R™ from Theo-
rem II.2 is explicitly given as

r.e” @
hy(z) = [[]]2
0 otherwise.

z € R™\ {0}

Indeed, for x+ — x, we have that e (@) 5 0. We can also
explicitly state the inverse h; ! : R — R"™ as

y € R"\ {0}

0 otherwise

vy
) = YTk

with o, defined on R™ \ {0} through

w(BEY 1 ey

arly) = <||y||2)1/2

Now we have the ingredients to explicitly compute h,.opt o
h,-1. We do this for (i) y € B(0,r)¢ and (ii) for y € B(0, ).

(i) First, suppose that we have y € B(0,r)¢ such that
|ly||2 = dr for some § > 1. It follows that «v,-(y) = 1+1n(d)
and thus = := h '(y) = (1 + In(0))y/||y||2- Recall that
¢ ()]l = [|2[|2 — ¢, for any 2" € R™\ {0} and t < ||2[|;
and thus, we have that ' (z) € B(0,1)¢ for t < In(§). Then,
looking at the definition of 7/, we can put it all together, that
is, we get

otherwise.

Y
l[yll2
for ¢ < In(6) = In(||y||2/7). Therefore, under the homeo-
morphism h,., once we start in B(0,r)¢, we flow towards
B(0,r) along the canonical dynamics & = —u.

We add that a simple computation shows that v, € K,
as constructed in the proof of Theorem II.2, becomes

s (s) = ln<s+r>.

r

hy o' o hil(y) = roe™

Indeed, then 7, (||y|l2 — ) = In(d).

(ii) Now suppose we start within B(0,r), say |y|lz = 0r
with § € (0,1) (¢ = 0 is not very interesting). To comply
with topologial conjugacies, we must recover finite-time
stability around the stable equilibrium. See that a.(y;6) =
V0 and thus 2 := h, ' (y) = VOy/||y||2 with ||z||2 < 1. This
means that we look at the second case of 7/ and

2
hy o' oht(y) :r(\/é—t> Y
FIE ©
2
Y
= (Vivla/r =) -
[yll2

for t < V6 = \/|lyl[2/r. Thus, finite-time stability is
preserved, as it should. Comparing (6) to (2), see that
apparent scaling is due to our choice of Lyapunov function.
Note that the dynamics on B(0,r) are now reminiscent of

Lot 1P W)l

Fig. 4: Resulting semiflow from Section III-A, e.g., we
visualize ¢ — ||@% (y)||2 for r = 1 and starting from |[|y||2 =
2, that is, although the true system is finite-time stable, we
first have exponential (asymptotic) decay for ¢ < In(2), then
we follow (6) (from B(0,r)) and observe a decay of the
form ¢ — (1 — (¢ — In(2))? until we hit 0.

t = 1B (@)ll2

Fig. 5: Resulting semiflow from Section III-B, e.g., we
visualize t — [|@L(z)|]2 starting from [|z|2 = 2, that is,
although the true system is merely asymptotically stable, we
follow ¢ — ||x||2 —t (i.e., typical finite-time behaviour) until
we hit the unit ball. Afterwards we have an asymptotic decay
of the form t +— e~ /2= z||,.

$ = —y/s, for s > 0, as the solution to this positive, scalar
ODE becomes (s, t) — ¢! (s) := ((s —1)/2)? for t < s.

With the above in mind, let ¢; denote the transformed
semiflow, i.e., @} := h, o ¢} o h,; !, then we visualize the
transformed dynamics in Figure 4. Observe the exponential
decay until B(0,r).

B.

Suppose we work with £ = —z and see that (1) can be
understood as the “canonical” finite-time stable system. The
previous section detailed how to go from (1) to the flow
under & = —z, at least, on B(0,r)°. Evidently, this can be
reversed. We will provide a simple example.

In Section III-A we constructed the map P : L. =
V=1(e) — S"! to be the identity, which in turn led to
hit(r-S"=1) = S§"~1, for h, as in Section III-A. Indeed,
one may further rescale these spheres, however, we continue
without doing so and readily find the following:

h, o e o hT’B(O,l)C (z) = 90“3(0,1)0 (z) )

for t < In(||h,(z)||l2/r) = 7' (z). We visualize h1oe "m0
h =: @' in Figure 5.



IV. DISCUSSION

There are several ways to prove Theorem II.2 and similar
results. We did not consider a reparametrization of time, nor
the simplest form the dynamics could have outside of the
domain of linearization. Plus, for simplicity, we have focused
on standard Euclidean balls (e.g., B(0,1)).

In spirit, Theorem II.2 can also be understood as
a non-local (and non-constant) version of flow-box (or
straightening-out) results cf. [22, Thm. 2.26]. Better yet,
one may interpret the above as a notion of a practical
linearization, akin to practical stability [23, §25] that is.

Results like these not only reinforce the Koopman operator
framework, but also the “hybridization” of topological index
theory, e.g., see [24], [25]. Moreover, these results are closely
related to recent studies [26], [27] into the topology of stable
systems as decompositions like (4) allow for studying spaces
of stable systems through homeomorphism groups, e.g., see
[26, Prop. 3.2]. To reiterate, although we allude to links with
Koopman operator theory, we emphasize that the Koopman
framework is more generally concerned with spectra, not
continuous transformations per se [1]. To demand that a
linearization itself is a continuous map is something we are
interested in due to aforementioned links with topological
dynamics systems theory.

Regarding future work, we are especially interested in
generalizations beyond equilibrium points, that is, to general
attractors. Even when restricted to compact attractors, this
extension is highly non-trivial. The “canonical system” (e.g.,
T = —x on R"™) is not obvious, although for some compact
attractors A on a metric space (X, d), one might consider an
ODE of the form

i = —0,d(z, A)?,

for d(z,A) = inf,cad(x,a). However, despite a well-
developed converse Lyapunov theory (e.g., see [28]), it is yet
unclear how to generalize the approach from above. Note, we
do have a well-developed understanding of homotopy equiva-
lence [9], [29] and topological embeddings [8]. Additionally,
we know that not every compact attractor itself is homotopy
equivalent to its domain of attraction [30], thus obstructing
a direct extension, in general.

At last, we are also interested in deeper ramifications for
learning dynamical systems, as alluded to before.
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